Assemble tests
ATA.assemble! — Methodassemble!(ata_model::AbstractModel; solver="jump", starting_design=Matrix{Float64}(undef, 0, 0), results_folder="results", start_temp=0.1, geom_temp=0.1, n_item_sample=1, n_test_sample=1, opt_feas=0.0, n_fill=1, max_time=1000.00, max_conv=2, feas_nh=0, opt_nh=5, verbosity=2, optimizer_constructor="GLPK", optimizer_attributes=[("tm_lim", 1000)])Description
Assemble the tests.
Arguments
ata_model::AbstractModel: Required. The model built with ATA fuctions.solver: Optional. Default:"jump". Values:"jump","siman". The solving interface to be used (JuMP or internal solver based on Simulated Annealing).starting_design: Optional. Default:Matrix{Float64}(undef, 0, 0). The starting design matrix. Must be aMatrix{Float64}.results_folder: Optional. Default:"results". The folder in which the output is stored.
siman arguments
start_temp: Optional. Default:0.1. Values:[0, Inf]. Starting temperature, set to minimum for short journeys (if 0 worse solutions will never be accepted).geom_temp: Optional. Default:0.1. Values:[0, Inf). Decreasing geometric factor.n_item_sample: Optional. Default:1. Values:[1, Inf]. Number of items to alter. Set to minimum for a shallow analysis, set to maximum for a deep analysis of the neighbourhoods.n_test_sample: Optional. Default:1. Values:[1, Inf]. Number of tests to alter. Set to minimum for a shallow analysis, set to maximum for a deep analysis of the neighbourhoods.opt_feas: Optional. Default:0.0. Values:[0, Inf). Optimality/feasibility balancer, if 0 only feasibility of solution is analysed. Viceversa, if 1, only optimality is considered (uncontrained model). All the other values are accepted but produce uninterpretable results.n_fill: Optional. Default:1. Values:[0, Inf). Number of fill-up phases, usually 1 is sufficient, if starttemp is high it can be higher. If a startingdesign is supplied, it can be set to 0.verbosity: Optional. Default:2. Values:1(minimal),2(detailed). Verbosity level. In the console '+' stands for improvement, '_' for accepting worse solution. The dots are the fill-up improvement steps.Termination criteria
max_time: Optional. Default:1000.0. Values:[0, Inf). Time limit in seconds.max_conv: Optional. Default:2. Values:[1, Inf). Maximum convergence, stop when, after max_conv rounds no improvements have been found. Set to minimum for shallow analysis, increase it for deep analysis of neighbourhoods.feas_nh: Optional. Default:0. Values:[1, Inf). Maximum number of Feasibility neighbourhoods to explore, set to the minimum if the model is small or not highly constrained.opt_nh: Optional. Default:5. Values:[1, Inf). Maximum number of Optimality neighbourhoods to explore, set to the minimum if the model is highly constrained.
jump arguments
optimizer_constructor: Optional. Default:"GLPK". Values:"GLPK","Knitro","Gurobi","Cbc","CPLEX","Xpress","SCIP","Juniper". JuMP solver selection. Remember to load the required package before assemble!.optimizer_attributes: Optional. Default:[("tm_lim", 1000)]. Values: An array of pairs(attribute, value). Attributes and related values for the JuMP solver.
other keyword arguments
kwargs...: Optional.