Utilities
ATA.fs_to_items
— Methodfs_to_items(xₜ, n_items, fs_items)
Description
Ungroup items grouped by friend sets.
Arguments
xₜ::Vector{Float64}
: Required. grouped items 0-1 vector.n_items::Int64
: Required. Number if items.fs_items::Vector{Vector{Int64}}
: Required. vector of items included in the friend sets.
Output
x_Iₜ::Vector{Float64}
Returns a 0-1 vector at item level.
ATA.item_char
— Methoditem_char(pars::DataFrames.DataFrame, theta::Float64; model = "2PL", parametrization = "at-b", D = 1, derivatives = false)
Description
Compute the item characteristic function (probability of correct answer).
Arguments
pars::DataFrames.DataFrame
: Required. DataFrame with item parameters (difficulty: b or d, discrimination: a or a1, guessing: c or g).theta::Float64
: Required. Ability point.model
: Optional. Default:"2PL
". Values:"1PL
","2PL
","3PL
". IRT model.parametrization
: Optional. Default: "at-b". Values: "at-b", "at-ab", "at+b", "at+ab". IRT model parametrization. Ex: at-b is $Da(\theta-b)$.D
: Optional. Default: 1.derivatives
: Optional. Default: false. If it's true compute the derivatives. Ow azeros(0,0)
matrix is returned.
Output
p::Matrix{Float64}
: Matrix of probabilites.pder::Matrix{Float64}
: Matrix of derivatives.
ATA.item_char
— Methoditem_char(pars::DataFrames.DataFrame, theta::Vector{Float64}; model = "2PL", parametrization = "at-b", D = 1, derivatives = false)
Description
Compute the item characteristic function (probability of correct answer).
Arguments
pars::DataFrames.DataFrame
: Required. DataFrame with item parameters (difficulty: b or d, discrimination: a or a1, guessing: c or g).theta::Vector{Float64}
: Required. Vector of ability points.model
: Optional. Default:"2PL
". Values:"1PL
","2PL
","3PL
". IRT model.parametrization
: Optional. Default: "at-b". Values: "at-b", "at-ab", "at+b", "at+ab". IRT model parametrization. Ex: at-b is $Da(\theta-b)$.D
: Optional. Default: 1.derivatives
: Optional. Default: false. If it's true compute the derivatives. Ow azeros(0,0)
matrix is returned.
Output
p::Matrix{Float64}
: Matrix of probabilites.pder::Matrix{Float64}
: Matrix of derivatives.
ATA.item_info
— Methoditem_info(
pars::DataFrames.DataFrame,
theta::Float64;
model = "2PL", #1PL, 2PL, 3PL, grm
parametrization = "at-b", #"at-b, at-ab, at+b, at+ab"
D = 1,
)
Description
Compute the item Fisher information function.
Arguments
pars::DataFrames.DataFrame
: Required. DataFrame with item parameters (difficulty: b or d, discrimination: a or a1, guessing: c or g).theta::Float64
: Required. Vector of ability points.model
: Optional. Default:"2PL
". Values:"1PL
","2PL
","3PL
". IRT model.parametrization
: Optional. Default: "at-b". Values: "at-b", "at-ab", "at+b", "at+ab". IRT model parametrization. Ex: at-b is $Da(\theta-b)$.D
: Optional. Default: 1.
Output
i::Matrix{Float64}
: Matrix of the item information.
ATA.item_info
— Methoditem_info(
pars::DataFrames.DataFrame,
theta::Vector{Float64};
model = "2PL", #1PL, 2PL, 3PL, grm
parametrization = "at-b", #"at-b, at-ab, at+b, at+ab"
D = 1,
)
Description
Compute the item Fisher information function.
Arguments
pars::DataFrames.DataFrame
: Required. DataFrame with item parameters (difficulty: b or d, discrimination: a or a1, guessing: c or g).theta::Vector{Float64}
: Required. Vector of ability points.model
: Optional. Default:"2PL
". Values:"1PL
","2PL
","3PL
". IRT model.parametrization
: Optional. Default: "at-b". Values: "at-b", "at-ab", "at+b", "at+ab". IRT model parametrization. Ex: at-b is $Da(\theta-b)$.D
: Optional. Default: 1.
Output
i::Matrix{Float64}
: Matrix of the item information.