Utilities
ATA.fs_to_items — Methodfs_to_items(xₜ, n_items, fs_items)Description
Ungroup items grouped by friend sets.
Arguments
xₜ::Vector{Float64}: Required. grouped items 0-1 vector.n_items::Int64: Required. Number if items.fs_items::Vector{Vector{Int64}}: Required. vector of items included in the friend sets.
Output
x_Iₜ::Vector{Float64}Returns a 0-1 vector at item level.
ATA.item_char — Methoditem_char(pars::DataFrames.DataFrame, theta::Float64; model = "2PL", parametrization = "at-b", D = 1, derivatives = false)Description
Compute the item characteristic function (probability of correct answer).
Arguments
pars::DataFrames.DataFrame: Required. DataFrame with item parameters (difficulty: b or d, discrimination: a or a1, guessing: c or g).theta::Float64: Required. Ability point.model: Optional. Default:"2PL". Values:"1PL","2PL","3PL". IRT model.parametrization: Optional. Default: "at-b". Values: "at-b", "at-ab", "at+b", "at+ab". IRT model parametrization. Ex: at-b is $Da(\theta-b)$.D: Optional. Default: 1.derivatives: Optional. Default: false. If it's true compute the derivatives. Ow azeros(0,0)matrix is returned.
Output
p::Matrix{Float64}: Matrix of probabilites.pder::Matrix{Float64}: Matrix of derivatives.
ATA.item_char — Methoditem_char(pars::DataFrames.DataFrame, theta::Vector{Float64}; model = "2PL", parametrization = "at-b", D = 1, derivatives = false)Description
Compute the item characteristic function (probability of correct answer).
Arguments
pars::DataFrames.DataFrame: Required. DataFrame with item parameters (difficulty: b or d, discrimination: a or a1, guessing: c or g).theta::Vector{Float64}: Required. Vector of ability points.model: Optional. Default:"2PL". Values:"1PL","2PL","3PL". IRT model.parametrization: Optional. Default: "at-b". Values: "at-b", "at-ab", "at+b", "at+ab". IRT model parametrization. Ex: at-b is $Da(\theta-b)$.D: Optional. Default: 1.derivatives: Optional. Default: false. If it's true compute the derivatives. Ow azeros(0,0)matrix is returned.
Output
p::Matrix{Float64}: Matrix of probabilites.pder::Matrix{Float64}: Matrix of derivatives.
ATA.item_info — Methoditem_info(
pars::DataFrames.DataFrame,
theta::Float64;
model = "2PL", #1PL, 2PL, 3PL, grm
parametrization = "at-b", #"at-b, at-ab, at+b, at+ab"
D = 1,
)Description
Compute the item Fisher information function.
Arguments
pars::DataFrames.DataFrame: Required. DataFrame with item parameters (difficulty: b or d, discrimination: a or a1, guessing: c or g).theta::Float64: Required. Vector of ability points.model: Optional. Default:"2PL". Values:"1PL","2PL","3PL". IRT model.parametrization: Optional. Default: "at-b". Values: "at-b", "at-ab", "at+b", "at+ab". IRT model parametrization. Ex: at-b is $Da(\theta-b)$.D: Optional. Default: 1.
Output
i::Matrix{Float64}: Matrix of the item information.
ATA.item_info — Methoditem_info(
pars::DataFrames.DataFrame,
theta::Vector{Float64};
model = "2PL", #1PL, 2PL, 3PL, grm
parametrization = "at-b", #"at-b, at-ab, at+b, at+ab"
D = 1,
)Description
Compute the item Fisher information function.
Arguments
pars::DataFrames.DataFrame: Required. DataFrame with item parameters (difficulty: b or d, discrimination: a or a1, guessing: c or g).theta::Vector{Float64}: Required. Vector of ability points.model: Optional. Default:"2PL". Values:"1PL","2PL","3PL". IRT model.parametrization: Optional. Default: "at-b". Values: "at-b", "at-ab", "at+b", "at+ab". IRT model parametrization. Ex: at-b is $Da(\theta-b)$.D: Optional. Default: 1.
Output
i::Matrix{Float64}: Matrix of the item information.